@) Sonar

The Coding
Personalities of
Leading LLMs

A State of Code Report

The Coding Personalities of Leading LLMs - A State of Code Report October 2025

Table of Contents

Introduction 3
Our approach 4
Foundation of shared strengths and flaws 5
Shared strengths 5
Shared flaws 7
Coding personailities 12
Personality traits 12
Coding archetypes 15
The baseline performer 16
The senior architect 16
The balanced predecessor 17
The efficient generalist 17
The unfulfilled promise 18
The rapid prototyper 18
Why “more capable” can be riskier 19
Conclusion 20

sonar.com 2/21

https://www.sonarsource.com/

The Coding Personalities of Leading LLMs - A State of Code Report October 2025

Introduction: Beyond the
performance benchmark

Al has embedded itself in the software development lifecycle (SDLC) at an
extraordinary speed. Tools such as Claude Code, Cursor, and GitHub Copilot are
increasingly standard and necessary tools for software developers. Underlying
all of these tools are Large Language Models (LLMs), some general purpose from
companies like OpenAl, Anthropic, Meta, and Google, and some specially built for
coding use cases.

Understanding the true capabilities of these models is of critical importance

as the industry develops. However, the typical methods for evaluating these
capabilities do not give a complete, high-resolution picture. A primary evaluation
approach focuses on assessing LLM performance against benchmarks that

test their ability to solve difficult coding challenges—what we consider to be an
important but narrow test.

This relentless focus on performance benchmarks leads to what experts
describe as “super spiky capability distributions.” As we will show in this report,
this focus on performance benchmarks leads to LLMs that can solve difficult
coding challenges, but do not necessarily write good code—that is, code that is
reliable, secure, and maintainable.

It is critical that we move beyond relying only on performance benchmarks,

and start to understand the full mosaic of capabilities of coding models, their
personalities and habits, good and bad. By doing so, we can ensure that we have
a more nuanced understanding that helps us more consistently select the best
model for the job to be done.

sonar.com

3/21

https://www.sonarsource.com/

The Coding Personalities of Leading LLMs - A State of Code Report October 2025

Our approach: A deep analysis of
LLM-generated code

To move beyond the standard performance benchmarks, Sonar developed

a proprietary analysis framework for assessing LLM-generated code. This
approach leverages the core strengths of the SonarQube Enterprise static
analysis engine, which is built on over 16 years of experience in detecting
complex bugs, vulnerabilities, and code smells in enterprise-grade software.

We combined this deep code analysis with best practices from coding model
evaluations. Our analysis covers two classes of models: five leading “non-
reasoning” LLMs (Anthropic’s Claude Sonnet 4 and 3.7, OpenAl's GPT-40,
Meta's Llama 3.2 90B, and the open-source OpenCoder-8B) and one new
“reasoning” model, GPT-5. To create a direct, apples-to-apples comparison, we
evaluated GPT-5 in its minimal reasoning mode, which is analogous to the non-
reasoning approach of its peers. For a full analysis of GPT-5’s tunable reasoning
capabilities, please see our supplemental report, “How Reasoning Impacts LLM
Coding Models.” Each model was tasked with completing over 4,442 distinct
Java programming assignments from recognized sources, including MultiPL-E-
mbpp-java, MultiPL-E-humaneval-java, and ComplexCodeEval.

Our goal was to provide a clear, objective analysis that creates opportunities

for improvement and informed decision-making. For model developers, our
findings offer a roadmap that goes beyond traditional performance benchmark
scores, highlighting concrete areas to improve their coding models. For software
developers and their organizations, our work provides critical insights needed
to choose the right models for the right tasks, and ensure they are used safely
and effectively.

sonar.com 4/21

https://www.sonarsource.com/
https://www.sonarsource.com/
https://www.sonarsource.com/products/sonarqube/
https://www.sonarsource.com/blog/how-reasoning-impacts-llm-coding-models/
https://www.sonarsource.com/blog/how-reasoning-impacts-llm-coding-models/
https://arxiv.org/abs/2208.08227
https://arxiv.org/abs/2208.08227
https://arxiv.org/abs/2208.08227
https://arxiv.org/abs/2409.10280

The Coding Personalities of Leading LLMs — A State of Code Report

October 2025

A foundation of shared
strengths and shared flaws

Before we discuss the unique personalities of each LLM, it is important to
highlight the common foundation of strength and weaknesses that all models
share. This section will detail these shared characteristics, starting with the

powerful capabilities that have driven their widespread adoption.

As outlined in our approach, this report evaluates two distinct classes of models:
traditional, non-reasoning LLMs and a new reasoning model, GPT-5. This
distinction is critical to understanding the data that follows. In general, reasoning
models represent a trade-off: their ability to reason about a problem often leads
to higher functional correctness and better avoidance of common security flaws.
However, this comes at the cost of generating significantly more verbose and
complex code, which can introduce a new class of subtle, harder-to-detect bugs
and a greater long-term maintainability burden.

Shared strengths

The code generation capabilities of large language models are fundamental to
their growing application in software development. Our benchmark analysis
provides quantitative data confirming a consistent set of shared competencies.

Table 1: LLM performance on MultiPL-E Java benchmarks

MultiPL-E . . Claude Claude 3.7 Llama 3.2

benchmarks GPT-5-minimal Sonnet 4 Sonnet 90B OpenCoder-3B
HumanEval L 91.77% | 95.57% | 84.28% | 73.42% | 61.64% | 64.36%

(158 tasks) ' ' ' ' ' '

LAl | caien | cossn | eno | caEn | oen | oo

(385 tasks) | oo e i . L .

WEIEIMEE) IEEE) o o | 77.04% | 72.46% | 69.67% | 61.47% | 60.43%
Pass@1 avg ! ! ; : : :

sonar.com

5/21

https://www.sonarsource.com/

The Coding Personalities of Leading LLMs - A State of Code Report October 2025

Syntactic and boilerplate generation

The ability to generate syntactically valid code is a fundamental requirement
for a coding assistant. The design of our benchmarks provides a direct
measure of this skill, as syntactically flawless code is a prerequisite for passing
any functional test. The high pass rates recorded in the table are therefore

a clear indicator of this reliability. For example, Claude Sonnet 4's success

rate of 95.57% & GPT-5-minimal’s success rate of ~92% on HumankEval
demonstrates a very high capability to produce valid, executable code.

Technical competence

Beyond correct syntax, the models demonstrate robust capabilities in
algorithmic problem-solving. The “weighted test Pass@1 average” provides a
balanced measure of this capability, and the scores achieved by models like
GPT-5-minimal (75.37%) and Claude Sonnet 4 (77.04%) confirm a high degree
of reliability.

Uiy

Conceptual translation

Our analysis points to the models’ notable capability for conceptual translation
across different programming languages, suggesting their core capability is
understanding abstract logic and translating it across linguistic environments.

sonar.com

6/21

https://www.sonarsource.com/

The Coding Personalities of Leading LLMs — A State of Code Report October 2025

Shared flaws

While the shared strengths drive Al's utility, we also found a consistent pattern
of shared weaknesses that diminishes the overall effectiveness of the coding
models.

A lack of security consciousness

All models demonstrate security weaknesses, but the introduction of reasoning
models like GPT-5-minimal has fundamentally shifted the risk profile. Non-
reasoning models consistently produce a high percentage of ‘BLOCKER’ severity
vulnerabilities. In contrast, GPT-5-minimal produces code with a vulnerability
density 3-6 times lower than its peers. However, this comes at a cost: it trades
common, well-understood flaws for more subtle, implementation-specific
vulnerabilities. For example, it still produces “Path-traversal & Injection” flaws

at a significant rate (20%), but it introduces a dramatically higher percentage of
vulnerabilities related to “Inadequate 1/O error-handling” than any other model.

Table 2: Subcategories of security vulnerabilities and their origins (% of total vulnerabilities for model)

GPT-5- Claude-

Path-traversal & Injection ' 20 | 34.04 | 31.03 | 33.93 | 2683 | 28.36
Hard-coded credentials ' 5 ' 1418 | 10.34 | 1786 | 2358 | 29.85
Cryptography misconfiguration | 23.33 | 24.82 | 23.28 ' 19.64 | 2276 | 22.39
XML external entity (XXE) ' 10 | 1064 | 1552 1 1339 11951 | 5.97
Inadequate 1/O error-handling 30 4.96 7.76 714 4.88 7.46
Certificate-validation omissions | 8.33 | 2.84 L 4.31 268 10 | 2.99
| Other ' 5 . 7.8 | 7.76 446 163 |0 |

These issues are further underscored by the severity of the vulnerabilities
introduced. The following table breaks down this severity, revealing a
fundamental difference between the reasoning and non-reasoning models. Our
analysis found that a majority of vulnerabilities for every non-reasoning model
are of ‘BLOCKER' severity, the highest possible rating.

sonar.com

7/21

https://www.sonarsource.com/

The Coding Personalities of Leading LLMs — A State of Code Report October 2025

Table 3: Vulnerability Severity Distribution (% of total vulnerabilities)

LLM Model BLOCKER % CRITICAL % MAJOR % MINOR %
GPT-5-minimal | 35.00 | 31.67 | 3.33 | 30.00

Claude Sonnet4 | 59.57 | 28.37 | 5.67 | 6.38

Claude 3.7 Sonnet | 56.03 | 28.45 | 517 ' 10.34

GPT-40 | 62.50 | 23.21 | 5.36 | 8.93

Llama 3.2 90B | 70.73 | 2276 | 1.63 | 488

| OpenCoder-8B | 64.18 | 26.87 | 1.49 | 7.46)

This is not a matter of occasional hallucination but rather a structural failure
rooted in the LLMs’ foundational design and training. LLMs struggle to prevent
injection flaws because doing so requires taint-tracking from an untrusted
source to a sensitive sink, a non-local data flow analysis that is beyond the
scope of their typical context window. They generate hard-coded secrets (like
passwords) because these flaws exist in their training data.

sonar.com 8/21

https://www.sonarsource.com/

The Coding Personalities of Leading LLMs — A State of Code Report October 2025

A struggle with engineering discipline

All LLMs evaluated demonstrate a consistent struggle with the core tenets of
software engineering, particularly in areas that require a global, context-aware
understanding of the application. Severe bugs like resource leaks (e.g., failing to
close file streams) and API contract violations (e.g., ignoring critical error return
values) appear consistently across all models. Reasoning presents a trade-off:
higher reasoning in GPT-5 reduces fundamental logical errors like “Control-flow
mistakes” but drastically increases advanced flaws like “Concurrency / threading”
bugs, as the model attempts more complex solutions.

The table below details the most common bug categories.

Table 4: Subcategories of bugs and their origins (% of total bugs for model)

Catedor GPT-5- Claude Claude 3.7 GPT-40 Llama 3.2 90B OpenCoder-8B
gory minimal (%) Sonnet4 (%) Sonnet (%) (%) (%) (%)
Control-flow % 5426 ' 14.83 | 23.62 | 4815 | 31.06 | 21.37

mistake ! ; : : | :

APl contract i g 4g ' 10.29 ' 1412 | 8.64 ' 14.9 ' 19.35
violation ! ! : ; : :
Exception . 9.18 1675 1671 116 ' 14.39 | 14.52
handling : : : : | |
Resource 0 ' ' ' 0 i
management/ | 11.48 | 15.07 | 8.36 L 7.0 | 12.88 ' 9.68
leak : | | ; : ;
Type-safety/ 5 o5 ' 11.24 | 12.97 ' 7.9 | 6.82 | 7.66
casts : : : : : :
Concurrency [+ 5 | 9.81 ' 1.44 173 ' 1.26 | 2.82
threading ; ! ! : : :
Null fdata- = 5 27 | 7.89 | 7.49 | 8.89 | 5.81 | 6.85
value issues ; ! ! ! : :
Performance/ . 3 7 431 | 6.3 395 278 | 5.24
structure | : : :] :
Pattern /regex | 0.82 | 2.63 R L 0.74 L 0.25 | 2.42
Data-structure | ' 1.44 ' 115 ' 0 ' 1.01 | 1.61
bug : : : : : :
Serialization/ 0 058 0 ' 0.76 ' 1.61
serializable ; ! ' ' ! '
Other | 8.2 | 574 | 6.05 | 0.99 | 8.08 | 6.85

sonar.com 9/21

https://www.sonarsource.com/

The Coding Personalities of Leading LLMs — A State of Code Report

October 2025

An inherent bias towards messy code

Perhaps the most fundamental shared flaw is a deep, inherent tendency towards
producing “messy” code. For all non-reasoning models, code smells are the vast
majority of issues. This is exacerbated by reasoning models like GPT-5; its focus

on correctness and security comes at the cost of generating complex code,

which in turn introduces a massive number of maintainability issues and a high
proportion of ‘CRITICAL’ code smells.

Table 5: Distribution of issue types by LLM (% of total issues)

LLM % Bugs % Vulnerabilities % Code smells
GPT-5-minimal | 4.67% | 0.46% | 94.87%
Claude-Sonnet-4 | 5.85% | 1.95% | 92.19%
Claude-3.7-Sonnet | 5.35% L 1.76% | 92.88%
GPT-40 L 7.41% | 2.05% | 90.54%
Llama 3.2 90B L 771% | 2.38% | 89.90%

| 6.33% L 1.72% | 91.95%

OpenCoder-8B

This massive volume of code smells is not just a matter of quantity, but also
of severity. The following table provides the most direct evidence of the
maintainability trade-off. The data shows that the entire GPT-5 family is a

significant outlier, producing a much higher proportion of ‘CRITICAL’ code smells

than any other model. This is the “cost” of its high functional performance: a
direct and immediate increase in severe technical debt.

sonar.com

10/21

https://www.sonarsource.com/

The Coding Personalities of Leading LLMs — A State of Code Report October 2025

Table 6: Subcategories of code smells and their origins (% of total code smells for model)

GPT- Claude Claude 3.7 Llama 3.2
Category Sminimal Sonnet 4 Sonnet g/P)T o 90B 8/}9)enCoder—SB

(%) (%) (%) ° (%) °
Dead /unused /redundant | ,, ; ' 14.83 ' 17.43 | 263 | 34.82 | 4274
code : : : : : :
Design/frameworkbest 1, 0, ! 5526 | 1858 ' 2081 | 18.84 | 12.45
pl"aCtlceS ' ' ' : ! :
Assignment / field / scope 1 g g, ' 11.96 ! 15.35 11321 | 11.32 ' 11.95
visibility - - - - ; ;
cellezfon | genemes | ' 1482 11394 | 1123 ' 992 | 9.03 ' 7.89
param / type - ! ! : ! :
Regex [pattern/string/ | 4.4 L 13.7 1.8 ' 736 | 6.81 | 5.29
format ' ' ' ' ' '
Cognitive / computational 44 &5 | 4.25 | 8.43 i 373 | 2.67 ' 279
complexity : : : : : :
Control / conditional-logic ., 4, ' 4.67 | 3.1 | 403 | 3.02 L 2.2
smell : : : : : :
Deprecation / obsolete . 0.82 © 2.01 '\ 2.34 1 208 | 2.89 . 4.01
Naming / style / L 2.1 ' 2.69 L 2.5 284 | 216 ' 1.89
documentation ' ! ' ' ' !
Exception-handling smell | 0.03 . 0.05 : 0.08 . 0.06 | 0.02 . 0.06
Other 2475 | 9.64 | 8.33 964 | 8.4 | 8.72

These findings paint a clear picture of the shared baseline for the current

generation of LLMs. On one hand, they share a powerful set of strengths, from
generating syntactically correct code to solving complex algorithmic problems,
which makes their emergence is so compelling. On the other hand, they are all
built with the same blind spots: a consistent inability to write secure code, a
struggle with engineering discipline, and an inherent bias towards generating
technical debt.

To effectively leverage Al in coding, developers need to be prepared to
recognize and compensate for the weaknesses in the models. Understanding
the shared strengths and flaws is a crucial first step. However, just as every
developer has their own personality and coding style, LLMs also exhibit their
own individual styles. Security, quality, and reliability issues come to life in
different ways in different models, and it is crucial to understand the nuances
to get the best results.

sonar.com

n/21

https://www.sonarsource.com/

The Coding Personalities of Leading LLMs - A State of Code Report

October 2025

The coding personalities of
leading LLMs

If the LLMs have many shared strengths and flaws, why does each LLM’s
code feel so different in production? This section confronts that apparent
contradiction. Our analysis shows that each LLM has a unique and inherent
style, a measurable “coding personality.”

Coding personality traits

The evidence for these distinct coding personalities is not anecdotal—it is
quantifiable in the most basic structural metrics of the generated code. While
most models exhibit a single, consistent style, the introduction of reasoning
models like GPT-5 adds a new dimension. For these models, the personality

is not static; it's a spectrum. Key traits can change based on the chosen
reasoning mode, creating a range of behaviors from a single underlying model.

Before we break down the individual traits, the following chart provides a
visual summary of the LLM landscape where we tested six of them. It clearly
illustrates a fundamental trade-off in the current generation of models: the
highest-performing models consistently achieve their results by generating
a significantly larger and more complex volume of code. As the chart shows,
models like GPT-5-minimal and Claude Sonnet 4 occupy a distinct space,
pushing the boundaries of functional performance at the cost of a massive
increase in complexity and verbosity.

125k
e
> 100l The highest performing -
-'i models generate the most !
() verbose and complex code. —
g 75k . (GPT-5-minimal)
3 S
o Sos
© 2o -
2 T
= 50k -GPT-40
s’ Llama 3.2 90B |
o ' '
(&) % '
208 | @ : Claude Sonnet 4
. Claude 3.7 Sonnet
+--{ OpenCode-8B
\

60% 65% 70% 75%

Functional performance (weighted pass rate)

key @) Bubble size = lines of code

sonar.com

12/21

https://www.sonarsource.com/

The Coding Personalities of Leading LLMs — A State of Code Report October 2025

Our analysis groups these metrics into three primary traits that define each
model’s coding style:

» Verbosity: The sheer volume of code a model generates to solve a given set
of tasks.

o Complexity: The structural and logical intricacy of the generated code,
measured by metrics like cyclomatic and cognitive complexity.

o Communication and documentation: The density of comments in the code,
which reveals the model's tendency to explain its work.

8

Verbosity

The most immediate personality trait that emerges is a model’s verbosity. An
analysis of the total lines of code (LOC) generated to solve the same set of
4,442 tasks reveals a huge stylistic difference. For instance, GPT-5-minimal
demonstrated a highly-verbose personality, generating 490,010 LOC, second
only to Claude Sonnet 4. In stark contrast, the OpenCoder-8B model was far
more concise, producing only 120,288 LOC to address the exact same problems.

This is not a simple matter of length—it reflects a fundamental difference in
approach. One model is expansive and comprehensive, attempting to build a
complete, self-contained solution. The other is direct and economical, aiming
for the quickest route to a working solution. It's not about one being better than
the other, but this seemingly small stylistic decision has a big impact. A verbose
model may produce code that is harder to review and navigate, while a concise
model might omit important context or safeguards, demanding more effort from
the human developer to make it production ready.

sonar.com

13/21

https://www.sonarsource.com/

The Coding Personalities of Leading LLMs - A State of Code Report October 2025

&

Complexity

Beyond sheer volume, the inherent complexity of the generated code quantifies
the thinking style of the Al. Using metrics like cyclomatic and cognitive
complexity, which measure the structural and logical difficulty of understanding
code, reveals another clear personality trait.

GPT-5-minimal, one of the most verbose models, also produced the most
intricate solutions, with a total cognitive complexity score of 111,133. This

is more than twelve times the complexity of the code from the concise
OpenCoder-8B, which scored 13,965. This metric serves as a proxy for the
model’s problem-solving philosophy. A high-complexity score suggests a
personality that favors building elaborate, multi-layered solutions. A low score
indicates a more linear, straightforward approach. While complex solutions may
be necessary for difficult problems, they also create a larger surface area for
bugs and increase the cognitive load on human developers who must maintain
the code over time.

<>

Communication and documentation

A third personality trait is the models’ communication style, revealed through
their documentation habits. The density of comments in the generated code
indicates whether the model’s style is to explain its work or to assume its logic
is self-evident. Claude 3.7 Sonnet proved to be a creative commenter, with a
comment density of 16.4%. At the other end of the spectrum, GPT-5-minimal
proved to be a poor documentarian, with a comment density of only 2.1%. This
feature has real-world consequences for team collaboration and maintainability.
A well-commented codebase can onboard new developers more quickly and
simplify debugging. The fact that models exhibit such consistent but different
commenting behaviors underscores that they are not neutral code generators—
they are opinionated authors with distinct communication styles.

These foundational metrics are not just output statistics—they are the behavioral
signatures of an Al's underlying personality, setting the stage for a deeper
analysis of their strengths and weaknesses.

The following table presents the foundational data for this analysis, compiling
these key metrics from 4,442 identical programming tasks to establish a
quantitative baseline for each model's unique signature.

sonar.com

14/21

https://www.sonarsource.com/

The Coding Personalities of Leading LLMs — A State of Code Report October 2025

Table 7: Comparative Code Generation Metrics Across LLMs

LLM Model I(_Ii_noeg)of sl Comments (%) 830/2%12?(33 Cognitive Complexity
GPT-5-minimal | 490,010 L 2.10% | 145,099 | 111,133
Claude-Sonnet-4 | 370,816 | 5.10% | 81,667 | 47,649
Claude-3.7-Sonnet | 288,126 | 16.40% | 55,485 | 42,220

GPT-40 | 209,994 | 4.40% | 44,387 | 26,450

Llama 3.2 90B | 196,927 | 7.30% | 37,948 | 20,811

| OpenCoder-8B | 120,288 | 9.90% | 18,850 | 13,965 J

The coding archetypes of
leading LLMs

With a full view of their individual personality traits, we can define “coding
archetypes.” Just as a hiring manager assesses a human candidate’s resume,
we can build a narrative dossier for each LLM, using a wealth of data to bring its
personality to life. This approach moves beyond simplistic rankings to provide

a nuanced understanding of each model's relative strengths, weaknesses, and
ideal use cases.

The following matrix provides a high-level summary of these personalities,
combining quantitative metrics with qualitative archetypes to serve as a
reference for the detailed profiles that follow.

sonar.com 15/21

https://www.sonarsource.com/

The Coding Personalities of Leading LLMs — A State of Code Report October 2025

Table 8: LLM coding archetypes

Issue density Dominant flaw

Coding Functional skill

Verbosity Cognitive

o (Issues/ . type (% of total

archetype (pass rate %) KLOC) (LOC) complexity s

GPT-5- . Thebaseline ;g 379 | 26.65 ' 490,010 | 111,133 | 9487%code
minimal . performer : : : : smells
e or | e e e 92.29

Claude Sonnet ; The senior i 240 ' 19.48 | 370,816 | 47,649 | 922%code
4 + architect : : : : smells
E E E E E E 9

Claude 3.7 : The balanced | 72.46% ! 2082 | 288126 | 42,220 : 92.9% code
Sonnet ' predecessor : : : + smells
e cient | e e e ' 90.5%

GPT-40 . Theefficient . g4 679 | 26.08 | 209,004 | 26450 20-5%code
' generalist : : : : + smells

Llama3.2908 | |neunfulfilled . g, ;50 | 26.20 ' 196,927 | 20,811 89.9% code
' promise : : : : + smells
- i E E E E E %

OpenCoder- . The rapid | 60.43% | 32.45 | 120,288 | 13065 | 220%code
8B 1 prototyper : : : : + smells

The baseline performer [crr-5-minimal]

This is the entry-level reasoning mode. It delivers strong performance that is
superior to most non-reasoning models. Its personality is defined by having a
more “traditional” risk profile compared to more advanced models. It produces
common and well-understood flaws, such as a significant rate of “Path-
traversal & Injection” vulnerabilities (20%) and basic “Control-flow mistake”
bugs. At the same time, it introduces a new class of risk with its high verbosity
and complexity, leading to the highest proportion of CRITICAL code smells of
any model.

The senior architect [cioude sonnet 4]

This LLM codes like a seasoned and ambitious architect tasked with building
enterprise-grade systems. It exhibits the highest functional skill, successfully
passing 77.04% of the benchmark tests. Its style is verbose and highly complex,
as it consistently attempts to implement sophisticated safeguards, error
handling, and advanced features, mirroring the behavior of a senior engineer.

This very sophistication creates a trap: teams may feel the code is safer because
it looks advanced, while in reality it likely introduces more complex, high-severity
bugs like resource leaks.

sonar.com 16/21

https://www.sonarsource.com/

The Coding Personalities of Leading LLMs - A State of Code Report October 2025

The very sophistication of the model creates a lot of opportunities for higher-
risk bugs that plague complex, stateful systems. Its unique bug profile reveals a
high propensity for difficult concurrency and threading bugs (9.81% of its total
bugs) and a significant rate of resource management leaks (15.07% of its bugs).
The model's strength—its focus on generating sophisticated code—is linked to
its weakness.

The balanced predecessor [ciaude 3.7 sonnet]

This model represents a capable and well-rounded developer from a prior
generation, exhibiting strong functional skills with a 72.46% benchmark pass
rate. Its most defining personality trait is its communication style—it is an
exceptional documentarian, producing code with a remarkable 16.4% comment
density—nearly three times higher than its successor and the highest of any
model evaluated. This makes its code uniquely readable and easier for human
developers to understand.

But here's the catch with the balanced predecessor: while it appears more stable
and less reckless than its more ambitious successor, it is by no means a “safe”
model. It still introduces a high proportion of ‘BLOCKER’ vulnerabilities (56.03%)
and suffers from the same foundational flaws as the other models.

The efficient generalist [crr-40]

This LLM is a reliable, middle-of-the-road developer. Its style is not as verbose
as the “senior architect” nor as concise as the “rapid prototyper’—it is a jack-of-
all-trades, a common choice for general-purpose coding assistance. Its code is
moderately complex and its functional performance is solid.

Its distinctive personality trait, however, is revealed in the type of mistakes it
makes. While generally avoiding the most severe ‘BLOCKER’ or ‘CRITICAL’ bugs,
it demonstrates a notable carelessness with logical precision. This is reinforced
by its single most common bug category: control-flow mistakes, which account
for a remarkable 48.15% of all its bugs (refer to Table 4).

This paints a picture of a coder who correctly grasps the main objective but
often fumbles the details required to make the code robust. The code is likely
to function for the intended scenario but will be plagued by persistent problems
that compromise quality and reliability over time.

sonar.com

17/21

https://www.sonarsource.com/

The Coding Personalities of Leading LLMs - A State of Code Report October 2025

The unfulfilled promise [Liama 3.2 90B]

Given its scale and backing, this model represents what should be a top-tier
contender, but its performance in our analysis suggests its promise is largely
unfulfilled. Its functional skill is mediocre, with a pass rate of 61.47%, only
marginally better than the much smaller open-source model we tested.

However, the model's most alarming characteristic is its remarkably poor
security posture. The model exhibits a profound security blind spot, with

an alarming 70.73% of the vulnerabilities it introduces being of ‘BLOCKER’
severity—the highest proportion of any model evaluated. This security profile
suggests that without an aggressive external verification layer, deploying this
model in a production environment carries substantial risk.

The rapid prototyper [opencoder-sa]

This LLM is the brilliant but undisciplined junior developer, perfect for
getting a concept off the ground with maximum speed. Its style is defined by
conciseness, producing the least amount of code (120,288 LOC) to achieve
functional results. This makes it an ideal choice for hackathons, proofs-of-
concept, and rapid prototyping where time-to-first-result is the primary goal.

But, while the immediate productivity gain is obvious, it comes at the cost of
the highest issue density, burying the project in technical debt that throttles
long-term productivity and maintainability.

This model is a technical debt machine, exhibiting the highest issue density
of all models at 32.45 issues per thousand lines of code. Its most prominent
personality flaw is a notable tendency to leave behind dead, unused, and
redundant code, which accounts for 42.74% of all its code smells.

This is a classic sign of rushed, iterative development without the discipline
of cleanup. While perfect for a prototype, its code is a minefield of
maintainability issues that would require a significant refactoring effort by
a senior human developer or a robust governance tool, before it could be
considered for production.

sonar.com 18/21

https://www.sonarsource.com/

The Coding Personalities of Leading LLMs — A State of Code Report October 2025

Why “more capable” can
be riskier

Comparing newer models uncovers the most surprising finding of this analysis:
a model “upgrade” can mask increases in real-world risk. The very process of
making a model “more capable” can also make it more reckless, or shift the risk
profile from common, well-understood flaws to more nuanced, and potentially
harder-to-detect, implementation challenges.

As the table below illustrates, while the newer Claude Sonnet 4 shows a distinct
improvement on performance benchmarks over its predecessor (+6.3%), this
gain is paid for with a marked increase in the severity of its mistakes. The bugs
and security vulnerabilities it creates are more likely to be of ‘BLOCKER’ severity.

The introduction of GPT-5 demonstrates a more complex trade-off. While it is
more functionally correct than most of its peers and dramatically reduces the
proportion of ‘BLOCKER'’ severity vulnerabilities, it also introduces a new, more
complex risk profile. As the model attempts more sophisticated solutions, it
generates a much higher rate of advanced “Concurrency / Threading” bugs than
any other model.

Table 9: The Evolving Risk Profile of More Capable Models

Metric Claude 3.7 Sonnet (Older) Claude Sonnet 4 (Newer) ClE=E
minimal
Benchmark pass rate | 72.46% | 77.04% | 75.37%
% of Vulnerabilities that are o o o
'BLOCKER' | 56.03% | 59.57% | 35.00%
% of Bu.gs'from Concurrency/ | 1.44% ' 9.81% | 20.00%
Threading ! ! :
This fundamental shift in the error profile means that the issues in lower-
reasoning models are often easier to spot because they are more common and
straightforward. The result is a new generation of models where increased
capability shifts the risk profile from common, well-understood flaws to more
nuanced, and potentially harder-to-detect, implementation challenges.
sonar.com 19/21

https://www.sonarsource.com/

The Coding Personalities of Leading LLMs - A State of Code Report October 2025

Conclusion: A new mandate for
evaluating the leading LLMs

Functional performance benchmarks are a vital measure of an LLM'’s core
problem-solving capabilities. Our findings are not intended to diminish these
achievements, but to enrich them with additional context. As this report has
shown, it is also important to study the crucial non-functional attributes—
security, engineering discipline, and maintainability—that ultimately govern the
total cost and risk of Al-assisted development.

This deeper analysis is revealing: all LLMs share common strengths and
weaknesses, and each possesses a unique personality. The advent of new
models like GPT-5 represents a fundamental turning point. They are not a
silver bullet, but powerful new tools that come with a significant trade-off: they
shift risk from common, well-understood flaws to more subtle, complex, and
potentially dangerous ones.

Regardless of whether code is written by developers or an LLM, the “trust

but verify” approach has never been more critical. For this new generation

of models, verification must be even more rigorous. Developers must resist

the false sense of security that comes from code that appears cleaner on the
surface, while hiding systemic issues like concurrency bugs and severe technical
debt underneath. As we accelerate into a world where most code is written

with Al assistance, harnessing the power of these models responsibly requires
expanding our view beyond the performance benchmark, to a richer, more
nuanced view of the leading LLMs and their unique personalities.

sonar.com 20/21

https://www.sonarsource.com/

sondar.com © 2008-2025, SonarSource S.A, Switzerland. All content is copyright protected. Sonar, SonarSource, SonarQube for IDE, SonarQube
Server, and SonarQube Cloud are trademarks of SonarSource SA. All other trademarks and copyrights are the property of their respective
owners. All rights are expressly reserved.

https://www.sonarsource.com/
https://www.sonarsource.com/

